针对目前工业电能模式的研究现状,本文阐述了在现代以太网基础上的电能管理系统的设计。 该系统实现了电能的远程实时监控与管理,并且该系统支持多种终端设备的远程访问,建立了一个实时的人机界面管理平台,实现对电能现代化管理模式。 提高了供电企业的管理效率和供电效益,并为地域跨越大的电网的远程监测提供了一种新思路。
随着电网的发展和相关政策的出台,用电管理也逐步实现了一家一表,抄表到户的制度。但是随之而来的问题是大量用电数据的回抄和管理。同时,用电的客户群体的多类型决定了高质量的供电要求。 由于自身结构的缺陷,传统的电能管理系统在有效性、实时可控性、*准性和应用特性等方面已经不能满足当下社会的用电需求,且会造成电力资源和人力资源的浪费。因此,电管理门需加快普及新型的电能管理系统。
随着互联网科技的飞速发展,现代化的科学技术将逐渐取代传统的电量测量工具。伴随着各类现代化的智能产品不断出现,在电能管理方面,通过工业以太网来管理电能系统的研究逐渐成为电能系统的主要研究主流。 而对电能的远程操控通过人机界面对电能采取远程管理控制,并对采集来的数据的进行高速高效的分析、计算、控制,从而节省了大量的人力资源,提高了管理效率。 基于工业以太网的电能网络监控系统,这是未来国家集中监控电力功耗和合理利用电能的发展趋势。
针对目前的电能质量的市场需求,文中论述了以太网的电能管理结构,阐述了系统中所用到的关键性技术。系统实现了对电能的远程监控与数据的分类采集,数据传输过程中的数据解析、协议转换、数据加密保护和保存等功能。从而实现了基于无线以太网的电能的管理系统的设计。
针对目前电能管理系统的现状,本文提出的电能管理系统是以工业以太网为基础的三层架构的电能管理系统。 电能管理系统结构图如图1所示。 该系统的主要功能是实现对现场数据的实时采集分析,通过工业以太网的对电能进行远程控制和管理。
系统的**级架构是****现场采集网络,网络图如图2所示的局部****现场采集网络图。****现场采集网络实现对****现场用电数据等信息的分类采集,在数据传输过程中实现对数据解析、协议转换、数据加密保护和保存等。利用链路结构的形式将数据传输到二级数掘汇集中心。
中端数据汇总网络中心是系统的*2级架构,主要负责汇集从各****现场采集网络发出的数据,并对用电数据进行缓存,汇总。*后根据上*级中心设置的标准,对数据进行分类上传,分时间段上传至上*级。
*后一层架构是终端数据中心,即省级数据处监控平台。终端数据中心会搭建一个监控系统的软件平台,对收集来自接受全省的用电信息数据信息进行数据分析和管理,并将之分类后进行存储,定时对数据进行备份。根据备份时间和数据分析管理的内容对数据库进行统计,生成各种类型的统计报表。根据报表的内容来制定管理流程制度,可以实现节能数据的*准化,使得电能管理更加人性化。
文中主要对电能管理系统的以太网式的监控模块和PLC主控模块进行了分析与研究。其中电能管理系统中涉及到了单片机技术、电力电子技术和通信技术等多项领域。
在电能管理系统中,基于以太网的监控模块的大致可分为5个模块,分别为PLC主控制模块,数据采集模块,回路通断控制模块,系统电能监控模块,和人机界面模块。
系统的硬件结构图如图3所示。系统硬件有三部分组成:控制端,被控端,被控对象。文中的电能管理系统是以可编程逻辑作为系统的控制核心,PLC主控制模块种有多个数据采集端口,每一个端口上有一百多个采集点,因而可以将主控制模板分布在各个监控区域;通过工业以太网可以实现各个主控制模板互通进而组成一个控制网络。实现过程如下:各个监控区域通过采集点收集数据信息,PLC主控制模块将采集到的信息进行整合运算,将处理好的数据反馈给用户并且将之进行分类存储,以便用户进行查看调用,归档的数据可以通过以太网进行数据信息交流,分类好的数据会被发送到控制中心。电能管理系统的工作人员可以使用PC机来实时监控用户的用电情况,并能利用PC机发送远程的控制指令。如进行断电抢修,对违章用户实施断电惩罚等。
此外,可以将主控制模块和系统电能监控模块两者配合使用,来达到采集电信号的目的,并以此来实现线路的通断电控制。
在基于以太网的电能管理系统中,不可缺少的环节是数据采集模块。数据采集模块的采集端口接收的信号是电压电流信号,在本系统中使用电流和电压互感器来采集电信号。如图4所示为采集终端的结构图。通过电压电流互感耦合器将信号传递给数据处理中心,由于大的电流电压信号不易传递,因此需要将之按比例缩小为易于测量 的小信号,该信号将先经过系统的电能监控模块,*后传输到控制中心。
回路通断控制模块由固态继电器和PLC主控制模块两者之间相互配合来实现回路通断控制的功能。固态继电器是一种无触点的具有隔离功能的电子开关,它被接在用户供电设备的输入端,当控制中心反馈的是用户超额用电信息时,控制中心将会向PLC主控制模块发出断电通知命令,主控制模块通过固态继电器来切断电源。因此,回路通断控制是通过固态继电器来控制供电各线系统电能监控模块
系统电能监控模块的工作原理图如图5所示,系统电能监控模块的功能是对数据采集模块采集的信号进行进一步的处理,将将模拟量传感器和开关量传感器的输入的信号进行测量,比较分析,输出主控制模块能够识别的安全信号。
电能监控模块实现的过程是先将数据采集模块采集的电流电压信号分别进行滤波处理,为了防止高频信号对对测量的电信号进行干扰,首先必须对高频干扰信号进行处理,处理方法是在电路中加入低通滤波器,被滤除高频干扰的信号*后用运算放大器对之进行放大处理。
系统电能监控模块是以太网电能管理系统的核心,它可以实现对多种信号的采集与对多种信号的实时监控,如电流,电压,功率因数等信号。现如今已经被广泛应用于学校、发电站等各个领域。
电能管理系统中设计了智能监控的人机界面。当监控中心需要观测用户的实时用电情况时,系统便会通过工业以太网将数据采集模块采集的信息传递到监控中心,电站管理人员可以通过人机界面观看出主控模块传递的用户用电信息,进而实现基于人机界面对现场进行的实时监控,监控中心的数据系统的操作平台是基于工业以太网的PC机构建而成。用户用电数据信息通过PLC主控制模块进行分析、交流和互通,构成了一个完整的电能管理系统,从而可以实现整个电能管理系统的远程分析、控制与监测功能。
因此,文中通过对基于工业以太网的电能管理系统电能监控模块的运行过程的分析,对整个管理系统运行情况以及实际应用中的数据进行对比,和管理系统在现场实际应用中的各部分运行情况的分析,表明基于工业以太网的电能管理系统已经取得了有效的成果。
用户端消耗着整个电网80%的电能,用户端智能化用电管理对用户可靠、安全、节约用电有十分重要的意义。构建智能用电服务体系,全面推广用户端智能仪表、智能用电管理终端等设备用电管理解决方案,实现电网与用户的双向良性互动。用户端急需解决的研究内容主要包括:先进的表计,智能楼宇、智能电器、增值服务、客户用电管理系统、需求侧管理等课题。
安科瑞Acrel-3000WEB电能管理解决方案通过对用户端用电情况进行细分和统计,以直观的数据和图表向管理人员或决策层展示各分项用电的使用消耗情况,便于找出高耗能点或不合理的耗能习惯,有效节约电能,为用户进一步节能改造或设备升级提供准确的数据支撑。
系统人机界面友好,以配电一次图的形式直观显示配电线路的运行状态,实时监测各回路电压、电流、功率、功率因数、电能等电参数信息,动态监视各配电回路断路器、隔离开关、地刀等合、分状态,以及有关故障、告警等信号。
系统以丰富的报表支撑计量体系的完整性。系统具备定时抄表汇总统计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况,即该节点进线用电量与各分支回路消耗电量的统计分析报表。该功能使得用电可视透明,并在用电误差偏大时可分析追溯,维护计量体系的正确性。
在配电一次图中,当鼠标移动到每个回路附近时,鼠标指针变为手形,鼠标单击可查看该回路详细电参量,包括三相电流、三相电压、三相总有功功率、总无功功率、总功率因数、正向有功电能,并可以查看24小时相电流趋势曲线小时电压趋势曲线运行报表
系统具有实时电力参数和历史电力参数的存储和管理功能,所有实时采集的数据、顺序事件记录等均可保存到数据库,在查询界面中能够自定义需要查询的参数、相应时间或选择查询更新的记录数据等,并通过报表方式显示出来。用户可以根据需要定制运行日报、月报,支持导出Excel格式文件,还可以根据用户要求导出PDF格式文件。
系统对配电系统总进线、主变压器、重要负荷出线的运行状态进行在线实时监视,用曲线显示电流、变压器运行温度、有功需量、有功功率、视在功率、变压器负荷率等运行趋势,分析变压器负荷率及损耗,方便运行维护人员及时掌握运行水平和用电需求,确保供电安全可靠。
系统具有实时报警功能,系统能够对配电回路断路器、隔离开关、接地刀分、合动作等遥信变位,保护动作、事故跳闸,以及电压、电流、功率、功率因数越限等事件进行实时监测,并根据事件等级发出告警。系统报警时自动弹出实时报警窗口,并发出声音或语音提醒。
系统能够对遥信变。
鼎博登录首页